Science is all about the data

scientific method

► Definitions

noun

a method of investigation in which a problem is first identified and observations, experiments, or other relevant data are then used to construct or test hypotheses that purport to solve it

So why the scepticism to Data Science?

Real scientists do:

- Application of Physics
- Generation of hypotheses
- Experimental Testing
- Statistical analysis

Data scientists do:

- Letting the data speak
- Finding relationships without first creating a hypothesis

Sometimes data science does get it wrong

Real

Article Talk

Google Flu Trends

From Wikipedia, the free encyclopedia

Google Flu Trends was a web service operated by Google. It provided estimates of influenza activity for more than 25 cour accurate predictions about flu activity. This project was first launched in 2008 by Google.org to help predict outbreaks of flu. institute of Cognitive Science Osnabrück carry the basic idea forward, by combining social media data e.g. twitter with CDC spreading ^[3] of the disease.

Google Flu Trends is now no longer publishing current estimates. Historical estimates are still available for download, and c

		Iournals	Topics	Careers		
Home	News	Journale		Lation Science Signaling	Science Translational Me	dicine
Science	Science Advances	Science Immun	hology Science Ro	Spottes Science o		
SHARE (f)	The Parable of Google Flu: Traps in Big Data Analysis					
	David Lazer ^{1,2,*} ,	Ryan Kennedy	^{1,3,4} , Gary King ⁵ ,	Alessandio		
	+ Author Affiliat	tions author. E-mail: d.	lazer@neu.edu.			
8+ 0	Science 14 Mar 20 Vol. 343, Issue 617 DOI: 10.1126/scie	014: 76, pp. 1203-1205 nce.1248506				
	Article	Figure	es & Data	Info & Metrics	eLetters	🔁 PDF
					View Full To	ext 🕑
	You are cur	rently viewing	g the summary	•		
	Summa In Februar executives GFT was I	ry 2013, Goog s or the creat predicting mo	gle Flu Trends (G ors of the flu tr ore than double	GFT) made headlines b acking system would b the proportion of doc htrol and Prevention ((but not for a reason t have hoped. <i>Nature</i> r tor visits for influenz CDC), which bases its	hat Google eported that a-like illness s estimates o pened despite

(ILI) than the Centers for Disease Control and Prevanitied States (1, 2). This happened des surveillance reports from laboratories across the United States (1, 2). This happened des the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data (3, 4), what lessons can we draw from this error?

"Scientific" data science

- You don't need to
 - throw physics and causality out the window
- You do need to
 - get the data out of the application silos and unwieldy file formats
- You probably need to
 - understand (and improve) your data quality
- You probably have a lot of data
 - If so, architecture for your analytics is important
 - Look at best storage and data model approaches
 - Consider how to run your analytics in parallel

"Scientific" data science - 2

- You probably have a lot of variables, and a lot of interaction
 - One of your first analytical steps is likely to be to reduce the complexity
 - You have a few options here
 - Defining higher order features manually based on understanding of the data giving a small enough set to run simple techniques like regression
 - Use a Clustering technique to reduce the number of examples
 - Use Principal Component Analysis or similar to reduce the number of dimensions
- THEN you can
 - Use analytical techniques to discover relationships in your data
 - Learn new things about your area of research
 - Identify new optimisation or prediction opportunities

Predicting the Weather

- Very good science in a supercomputer simulation
- Very good measurements come from sparse weather stations
- Can the science and the observations be compared to generate answers to:
 - When did we last see this?
 - What happened next?
 - And crucially, what was the impact?

Predicting the quality of 4D seismic

